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a b s t r a c t

Cognitively-normal people with evidence of b-amyloid (Ab) pathology and subtle cognitive dysfunction
are believed to be at high risk for progression to mild cognitive impairment due to Alzheimer’s disease
(AD). Clinical trials in later stages of AD typically include a coprimary endpoint to demonstrate efficacy
on both cognitive and functional assessments. Recent trials focus on cognitively-normal people, but
functional decline has not been explored for trial designs in this group. The goal of this study was
therefore to characterize cognitive and functional decline in (1) cognitively-normal people converting to
mild cognitive impairment (MCI) and (2) cognitively-normal b-amyloid-positive (Abþ) people. Specif-
ically, we sought to identify and compare the cognitive and functional assessments and their weighted
combinations that maximize the longitudinal decline specific to these 2 groups. We studied 68 people
who converted from normal cognition to MCI and 70 nonconverters, as well as 137 Abþ and 210 b-
amyloid-negative cognitively-normal people. We used bootstrap aggregation and cross-validated mixed-
models to estimate the distribution of weights applied to cognitive and functional outcomes to form
composites. We also evaluated best subset optimization. Using optimized composites, we estimated
statistical power for a variety of clinical trial scenarios. Overall, 55.4% of cognitively-normal to MCI
converters were Abþ. Large gains in power estimates were obtained when requiring participants to have
both subtle cognitive dysfunction and Ab pathology compared with requiring Ab pathology alone.
Additional power resulted when including functional as well as cognitive outcomes as part of the
composite. Composites formed by applying equal weights to all measures provided the highest estimates
of cross-validated power, although similar to both continuous weight optimization and best subset
optimization. Using a composite to detect a 30% slowing of decline, 80% power was obtained for pre-
dicted Abþ converters with 375 completers/arm for a 30-month trial using a combination of cognitive/
functional measures. In the Abþ group, power to approach levels suitable for a phase III clinical trial
would require considerably larger sample sizes. Composites incorporating both cognitive and functional
measures may substantially increase the power of a trial in a preclinical (Abþ) AD population with subtle
evidence of cognitive dysfunction.

� 2016 Elsevier Inc. All rights reserved.
Neurodegenerative Diseases,
Francisco, CA 94121, USA.

ll rights reserved.
1. Introduction

Accumulating evidence from Alzheimer’s disease (AD)
biomarker studies suggests b-amyloid (Ab) deposition may occur
decades before the diagnosis of clinical dementia (Morris, 2005).
Anti-Ab treatments are thought to have a higher likelihood of
slowing progression if administered at the earliest signs of the
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pathological cascade, before substantial neurodegeneration and
other downstream effects of Ab deposition (Sperling et al., 2011b).
Classification of Alzheimer’s disease into progressive stages has
helped to organize the current thinking about the emergence of
subtle clinical symptoms and the development of cognitive and
functional impairment during the continuum of disease progres-
sion (Sperling et al., 2011a). The initial stages of preclinical AD are
defined by amyloidosis and neurodegeneration. The final preclinical
stage also includes some evidence of subtle cognitive dysfunction,
although below levels of cognitive and functional impairment
required to meet criteria for mild cognitive impairment (MCI) due
to AD. As the disease progresses into MCI and dementia, cognitive
and functional deficits may be observed. Identifying the biomarkers
and clinical assessments that can predict and monitor the pro-
gression from the early stages of AD to more advanced disease will
help to elucidate the disease process and inform clinical trial design
(Insel et al., 2015). Here we sought to determine the optimal com-
bination of cognitive and functional measures to track disease
progression in cognitively-normal people progressing to MCI, and
of Ab-positive (Abþ) cognitively-normal people. Composite
endpoints comprising both cognitive and functional measures are
currently being used in clinical trials of MCI populations (Ard et al.,
2015; Raghavan et al., 2013; Wang et al., 2016). Here we consider
the inclusion of functional measures in the endpoint for clinical
trials in preclinical AD.

The Food and Drug Administration (FDA) recently offered draft
guidance to update their recommendations on primary endpoint
selection in clinical trials for early-stage AD (US Dept of Health
and Human Services, 2015). With the focus of recent clinical trials
on treatment in these earlier stages of AD, including prodromal AD
and preclinical AD, the FDA recognized the difficulty in demon-
strating drug efficacy using prior guidelines developed for trials
with subjects in the dementia stage of AD (Kozauer et al., 2013;
McKhann et al., 2011). Trial design in later stages of AD has typi-
cally included a coprimary endpoint to demonstrate efficacy on
both a cognitive and a functional assessment. However, the
assessment tools used in these trials have not been validated in
earlier stage subjects (Snyder et al., 2014), leading the FDA to
consider the use of a single primary composite endpoint that cap-
tures both cognitive and functional decline, in trials of prodromal
AD subjects. Preclinical AD subjects are, by definition, cognitively-
normal and should not have any functional impairment due to
cognitive dysfunction.We hypothesize that as the target population
progresses on the continuum of decline, assessing functional
changesmay take amore central role in demonstrating a drug effect
to be clinically meaningful. However, the feasibility and value of
assessing functional decline as part of a trial endpoint in a pre-
clinical population are unknown.

Since the FDA guidance, several cognitive composites have been
developed to capture the decline specific to subjects with preclin-
ical AD, but no attempts have been made to develop combined
cognitive and functional composites. The Alzheimer’s Prevention
Initiative (API) has developed cognitive composites using Presenilin
1 E280A mutation carriers (Ayutyanont et al., 2014) and also
cognitively-normal elders who converted to MCI or AD (Langbaum
et al., 2014). A third cognitive composite, to be used as the primary
endpoint in the A4 trial (Sperling et al., 2014), was developed to
capture decline in Abþ cognitively-normal elders (Donohue et al.,
2014), and selected individual components based on a literature
review. Functional assessments were not evaluated in the API or the
A4 composites.

The aim of this study was to identify and compare the cognitive
and/or functional assessments and their weighted combinations
that maximize the longitudinal decline specific to (1) cognitively-
normal to MCI converters (cCN); and (2) cognitively-normal
Abþ subjects. Conversion status is not known at the beginning of
the study, and thus, power estimates based on subjects’ true con-
version status would not be useful to inform a clinical trial.
Therefore, to reflect a realistic modern trial scenario, subjects who
were both predicted to convert using information available at
baseline and were also Abþ (pcCN), were used to estimate clinical
trial power. Using the battery of assessments from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), we sought to characterize
the importance of each cognitive and functional assessment in our
3 groups (cCN, pcCN, and Abþ) as well as provide cross-validated
estimates of power when using the composites in clinical trial
scenarios.

2. Material and methods

2.1. Participants

Data were obtained from the ADNI database (adni.loni.usc.edu).
ADNI is the result of efforts of many coinvestigators, and partici-
pants have been recruited from over 50 sites across the United
States and Canada (see www.adni-info.org). The population in this
study included ADNI-1 and ADNI-2 participants enrolled into the
cognitively-normal or subjective memory complaint cohorts, were
tested for cerebrospinal fluid (CSF) biomarkers or 18F-florbetapir
positron emission tomography (PET), and were followed longitu-
dinally for neuropsychological testing.

2.2. Cerebrospinal fluid biomarker concentrations

Each CSF sample was collected by lumbar puncture and shipped
on dry ice to the ADNI Biomarker Core laboratory at the University
of PennsylvaniaMedical Center for long-term storage at�80 �C. CSF
Ab42 was measured using the multiplex xMAP Luminex platform
(Luminex Corp, Austin, TX, USA) with the research use only
INNOBIA AlzBio3 kit (Fujirebio/Innogenetics, Ghent, Belgium)
(Olsson et al., 2005; Shaw et al., 2009).

2.3. Florbetapir PET

Methods to acquire and process ADNI florbetapir PET image data
were described previously (Landau et al., 2012). Full details of
acquisition and analysis can be found at http://adni.loni.usc.edu/
methods/.

2.4. Cognitive and functional outcomes

Cognitive measures assessed were the MinieMental State
Examination (MMSE), Alzheimer’s Disease Assessment Sca-
leecognitive subscale, 13-item version (ADAS13), immediate and
delayedmemory recall from theWechsler Memory Scale (iMemory,
dMemory), immediate and delayed Rey Auditory Verbal Learning
Test (iAVLT, dAVLT), Trail Making Test parts A and B (Trails A & B),
Boston Naming Test, and Category Fluency. The Clinical Dementia
Rating Sum of Boxes (CDR-SB) was also assessed, which includes
both cognitive and functional items, and finally the Functional
Assessment Questionnaire (FAQ), which is purely a functional
assessment (Kaplan et al., 1982; Morris, 1993; Pfeiffer et al., 1982;
Reitan, 1958; Rey, 1964; Rosen et al., 1984; Wechsler, 1987).

2.5. Statistical analysis

This study included 3 main sets of analyses. The first was a
comparison of normal participants who converted to a diagnosis of
MCI (cCN) during 7 years of follow-up versus stable cognitively-
normal (sCN) participants, during the same period. Follow-up on
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converters continued beyond diagnosis of MCI. The second analysis
was a comparison of participants predicted to convert toMCI (pcCN,
only including Abþ subjects) versus the b-amyloid-negative (Ab�)
participants from the sCN group. The third analysis was a com-
parison of Abþ versus Ab� participants, irrespective of conversion
information. There was considerable overlap among these groups.
The cCN or sCN participants that also had Ab information
(n ¼ 56 from the cCN group, and n ¼ 57 from the sCN group) were
also included in either the Ab� or Abþ groups. This is described
further in the results section. All pcCN participants were included in
the Abþ group.

Abþ was defined as florbetapir PET SUVR >1.10 at any point
during follow-up (Landau et al., 2012). Subjects without florbetapir
PET were considered Abþ if CSF Ab42 < 192 ng/L (Shaw et al., 2009).

In each of the 3 groups, we compared 2 types of optimization:
the first allowed continuous weights for each component while the
second was more constrained, allowing only combinations of
components with 0 or 1 weights (0 ¼ exclusion, 1 ¼ inclusion),
providing the best subset of components. For the continuous
weight optimization, in each group, composite weights were esti-
mated via bootstrap resampling and cross-validation to find the set
of weights that maximized the separation of the groups over the
first 48 months of follow-up. Spline knots for models limited to
48-month follow-up were placed at 12, 24, and 36 months, post
baseline. The median weight from this distribution for each
outcome was used to form the composite to be evaluated for trial
power. Details of each step are described in the following.

Longitudinal cognitive and functional measures were modeled
using linear mixed-effects regression with a random intercept and
slope and an unstructured covariance matrix for the random ef-
fects. Variance components were estimated conditional on con-
verter (or amyloid) status. All models included age (years),
education (years), gender, group, time since initial visit, and the
interaction between group and time, as predictors. To capture de-
partures from linearity in the trajectory of cognition and function,
continuous time from the baseline test was parameterized using a
3-knot restricted cubic spline, with knots placed at 1, 3, and 5 years,
post baseline. Differences in group trajectories were tested using
interactions between the 2 parameters for time resulting from the
spline and the group factor, group � (btime1 þ btime2). Likelihood
ratio tests were used to test the significance of the interaction for
longitudinal differences andWald tests on themain effect for group
were used to test for baseline differences (Chambers and Hastie,
1992). The p-values were 2-sided and adjusted for multiplicity us-
ing a Hochberg correction (Hochberg, 1988). The p-values < 0.05
were considered significant and the p-values < 0.10 were consid-
ered marginally significant.

Within each analysis, we aimed to identify the composite
weights that maximized the separation of the trajectories of the
groups over time. We evaluated 2 types of composites: one that
considered only the 10 cognitive components and another that also
included the 2 measures with functional assessments. To form the
composites, z-scores (mean centered and scaled to the standard
deviation of all baseline and longitudinal scores) of each compo-
nent were weighted and summed. For the continuous weight
optimization, weights for each component could be anywhere on
the interval [0, 1]. Numerical optimization was used to search the
space of candidate weights to maximize the separation of the
groups. Bound constrained optimization (Byrd et al., 1995) was used
to maximize the likelihood ratio test for group trajectory
differences.

The large number of cognitive and functional components
considered and the space of possible weight combinations in-
creases the risk of overfitting. To minimize overfitting, weights
were estimated and evaluated using bootstrap aggregation and 10-
fold cross-validation (Breiman,1996). Foldswere balanced on group
status and cognitive and functional measures. In each training set,
100 bootstrap samples were used to estimate a distribution of
optimal composite weights. The median weight for each compo-
nent from this distribution was then used to form the composite to
be evaluated in the test set. The steps of the analysis are shown in a
flowchart in Supplementary Fig. 1. The resulting estimates of lon-
gitudinal change and variance in the test sets were averaged and
used to estimate power for hypothetical clinical trials, as described
in the following. For the best subset optimization, the number of
components that maximized the cross-validated likelihood ratio
test was used in the final composite.

To determine the value of the composites derived by this
analysis, we used the cross-validated estimates of change and
variance to simulate hypothetical clinical trial scenarios with a
proportional treatment effect over time in the active group.
Averaging over test set estimates for change from baseline to 18,
24, 30, and 36 months and the estimates of the residual error,
subject-specific intercepts and slopes, and the correlation between
the intercepts and slopes, we estimated the power to detect a 30%
decrease in the difference between the change in the groups.
Sampling from the aforementioned estimates and assuming a
range of sample sizes, we simulated 1000 longitudinal clinical
trials for each sample size, composite type (cognition and function,
cognition only, best subset, and for comparison, flat weights across
all 12 components), and group. Power was estimated as the pro-
portion of significant p-values for the difference in change from
baseline at the final visit between the drug and placebo groups,
using a mixed-model repeated-measures design (Siddiqui et al.,
2009).

The pcCN subjects (restricted to Abþ subjects) were identified
using baseline cognitive/functional assessments, and demographic
and APOE information, with a random forest model (Breiman,
2001). Using cross-validated estimates of the probability of con-
version, we repeated all steps of the analysis described previously
to estimate power for a clinical trial based on participants whowere
both Abþ and predicted to convert (pcCN), to make our results
applicable to trials requiring Abþ for inclusion. Three-fold cross-
validation was used for the pcCN analysis because of the reduced
sample size.

The association between groups within each cohort and missing
data was modeled using generalized mixed-effects regression with
a binomial indicator for a missing visit. All analyses were done in
R version 3.1.1 (The R Foundation for Statistical Computing, Vienna,
Austria; www.r-project.org).

3. Results

3.1. Cohort characteristics

In the ADNI data set, 68 subjects converted toMCI during 7 years
of follow-up while 70 subjects remained cognitively-normal
throughout the same period. cCN subjects were older and had
more APOE ε4 carriers compared to sCN (Table 1). There were no
significant differences in gender or education. As described in the
Section 2.5, we also identified a group of cognitively-normal sub-
jects who were predicted to convert to MCI (pcCN, only including
Abþ subjects). Characteristics of the pcCN group are shown in
Supplementary Table 1.

One hundred thirty-seven Abþ subjects and 210 Ab� subjects
were included in the analysis. Abþ subjects were older, less
educated, and had more APOE ε4 carriers (Table 1). There was no
difference in gender. A Kaplan-Meier plot showing the distribution
of conversion times for the cCN, Ab�, and Abþ groups is shown in
Supplementary Fig. 2.

http://www.r-project.org


Table 1
Baseline characteristics

Variable Converters
(N ¼ 68),
mean (SD)

Nonconverters
(N ¼ 70),
mean (SD)

p

Age 76.5 (5.55) 74.9 (4.11) 0.014
Gender, female N (%) 28 (41.2) 37 (52.9) 0.178
Education 16.0 (2.67) 16.4 (2.75) 0.255
APOE ε4 N (%) 26 (38.2) 16 (22.9) 0.064
Ab positivity N (%)

(available for 56 cCN
and 57 sCN)

31 (55.4) 18 (31.6) 0.014

Abþ (N ¼ 137),
mean (SD)

Ab� (N ¼ 210),
mean (SD)

p

Age 75.6 (5.09) 73.5 (5.91) <0.001
Gender, female N (%) 74 (54.0) 98 (46.7) 0.189
Education 16.0 (2.71) 16.6 (2.65) 0.044
APOE ε4 N (%) 51 (37.2) 40 (19.0) <0.001

Key: Abþ, b-amyloid-positive; Ab�, b-amyloid-negative; SD, standard deviation.

Table 2
Baseline and longitudinal differences

Baseline Baseline difference,
converters versus
nonconverters (N ¼ 138)

Baseline difference,
Abþ versus Ab�
(N ¼ 347)

Zconverter �
Znonconverter (SE)

p ZAbþ � ZAb� (SE) p

MMSE �0.06 (0.13) 0.641 0.06 (0.09) 0.997
ADAS13 0.58 (0.11) <0.001 0.02 (0.08) 0.997
dMemory �0.44 (0.13) 0.01 �0.09 (0.09) 0.997
iMemory �0.42 (0.13) 0.012 �0.05 (0.09) 0.997
dAVLT �0.46 (0.14) 0.01 �0.03 (0.10) 0.997
iAVLT �0.48 (0.12) 0.001 0.03 (0.09) 0.997
Trails A 0.37 (0.14) 0.063 0.23 (0.10) 0.298
Trails B 0.32 (0.12) 0.063 0.28 (0.10) 0.062
Boston Naming Test �0.32 (0.13) 0.084 �0.06 (0.09) 0.997
Category Fluency �0.30 (0.16) 0.191 0.06 (0.10) 0.997
CDR-SB 0.09 (0.06) 0.299 0.0002 (0.04) 0.997
FAQ 0.19 (0.09) 0.156 �0.06 (0.06) 0.997

Longitudinal change Converters versus
nonconverters
(N ¼ 138, N Obs ¼ 871)

Abþ versus Ab�
(N ¼ 347, N Obs ¼ 1441)

c2 p c2 p

MMSE 15.03 0.002 25.96 <0.001
ADAS13 29.25 <0.001 38.95 <0.001
dMemory 24.73 <0.001 11.92 0.018
iMemory 18.47 <0.001 11.99 0.018
dAVLT 26.75 <0.001 5.48 0.194
iAVLT 32.26 <0.001 9.44 0.052
Trails A 6.83 0.066 1.85 0.396
Trails B 21.55 <0.001 3.38 0.369
Boston Naming Test 3.82 0.148 9.13 0.052
Category Fluency 15.16 0.002 5.79 0.194
CDR-SB 51.61 <0.001 17.64 0.001
FAQ 51.22 <0.001 34.18 <0.001

Key: Abþ, b-amyloid-positive; Ab�, b-amyloid-negative; ADAS13, Alzheimer’s
Disease Assessment Scaleecognitive subscale, 13-item version; iAVLT, immediate
Rey Auditory Verbal Learning Test; CDR-SB, Clinical Dementia Rating Sum of Boxes;
dAVLT, delayed Rey Auditory Verbal Learning Test; dMemory, delayed memory
recall from theWechsler Memory Scale; FAQ, Functional Assessment Questionnaire;
iMemory, immediate memory recall from the Wechsler Memory Scale; MMSE,
MinieMental State Examination; SE, standard error.
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Of the 68 cCN participants, 56 had Ab information: 31 (55.4%)
were Abþ and 25 (44.6%) were Ab�. Of the 70 sCN participants, 57
had Ab information: 18 (31.6%) were Abþ and 39 (68.4%) were Ab�.

3.2. Baseline cognitive/functional differences

When baseline cognitive/functional measures were compared in
cCN versus sCN, cCN subjects performed worse on all 12 outcomes.
Results with multiple comparison corrections are shown on the top
left of Table 2. There were fewer differences on baseline cognitive/
functional measures in Abþ versus Ab� participants (top right of
Table 2).

3.3. Longitudinal change

cCN subjects worsened significantly faster on 10 of the 12
cognitive and functional outcomes compared to sCN subjects, with
the exception of the Boston Naming Test and Trails A over 7 years of
follow-up (Fig. 1, Table 2, Supplementary Fig. 3). The largest effect
size was in the CDR-SB, and the largest effect sizes amongmeasures
without functional items were in the iAVLT and the ADAS13. Lon-
gitudinal trajectories of the pcCN group are shown in
Supplementary Fig. 4.

Abþ subjects worsened significantly faster on 6 of the 12 out-
comes compared to Ab� subjects (Fig. 1, Table 2). The largest effect
size was in the ADAS13.

cCN subjects were more likely than sCN subjects to be missing
data during the course of the 7 years of follow-up (log OR ¼ 0.82,
standard error ¼ 0.15, p < 0.001). However, sCN subjects were
selected to have aminimum follow-up time of 7 years. Ab-positivity
was not associated with increased missingness (log OR ¼ �0.04,
standard error ¼ 0.27, p ¼ 0.87).

3.4. Composite weight distributions

The distributions from 1000 bootstrap samples of the composite
weights that maximized the separation of the groups are shown in
Supplementary Fig. 5. Composite weights were estimated sepa-
rately for the 3 groups (cCN, pcCN, and Abþ).

The largest contributing outcomes in the composite for cCN
versus sCN were the 2 delayed memory recall measures (dMemory,
dAVLT), CDR-SB, and the MMSE (top left of Supplementary Fig. 5).
Outcomes with smaller, although nonzero, positive median
weights, included Category Fluency, iMemory, Trails A, and the
Boston Naming Test. When the functional measures were excluded,
the delayed memory recall measures and MMSE remained the
largest weighted outcomes and ADAS13 became more heavily
weighted.

Composite weights that maximized the separation of pcCN and
sCN subjects were also estimated. Using baseline information
including demographics, APOE ε4 status, and cognitive/functional
variables that were not heavily weighted in the true converter
composite (ADAS13, Trails A & B, FAQ, Boston Naming Test, iAVLT,
and iMemory), composite weights were estimated based on 32 Abþ
pcCN and 31 Ab� sCN participants. In reality, these 32 pcCN par-
ticipants consisted of 25 converters and 7 nonconverters, resulting
in a 78% positive predicted value from the model estimates. pcCN
subjects were older, less educated, had more APOE ε4 allele carriers,
and had lower cognitive scores at baseline compared with sCN
subjects, similar to cCN subjects (Supplementary Table 1). We then
estimated composite weights for this cohort. These weights are
shown in the middle row of Supplementary Fig. 5. Similar to the
cCN composite, the main outcomes for the pcCN composite were
dMemory, CDR-SB, and MMSE, but in contrast, included the Boston
Naming Test. When functional measures were excluded, the
ADAS13 carried more weight. Note that the pcCN were Abþ by
design because we aimed to make our results applicable to a trial
requiring Abþ for inclusion.

The composites for Abþ versus Ab� were heavily weighted by
ADAS13, FAQ, and MMSE (bottom left Supplementary Fig. 5). When
functional measures were excluded, ADAS13 and MMSE dominated
the composites.



Fig. 1. Longitudinal plots of cognitive and functional assessments of converters versus nonconverters on the left and Abþ versus Ab� on the right. Z-scores of each assessment are
plotted from baseline through 7 years of follow-up. Abbreviations: Abþ, b-amyloid-positive; Ab�, b-amyloid-negative; ADAS13, Alzheimer’s Disease Assessment Scaleecognitive
subscale, 13-item version; CDR-SB, Clinical Dementia Rating Sum of Boxes; FAQ, Functional Assessment Questionnaire; MMSE, MinieMental State Examination.
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3.5. Best subset components

The best subset results were similar to the continuous optimi-
zation results. For the cCN versus sCN comparison, 5 components
provided the optimal cross-validated composite, with the MMSE,
dMemory, dAVLT, CDR-SB, and Category Fluency selected in nearly
all cross-validation folds. For the pcCN versus sCN comparison, 7
components were selected, including the MMSE, dMemory, dAVLT,
CDR-SB, Category Fluency, and iMemory in nearly all folds and
occasionally either ADAS13 or Trails A. For the Abþ versus Ab�
comparison, 3 components were selecteddtheMMSE, ADAS13, and
FAQ. The power for these composites is described in the following.
3.6. Power

We estimated the power to detect a 30% slowing of decline
using the average out-of-sample estimates of change and vari-
ance for each composite and group, over a range of sample sizes.
The composite with flat weights across all measures was the best
performing composite, attaining 80% power with 375
completers/arm in a hypothetical 30-month trial. Eighty percent
power was attained with 450 completers per arm using the
optimized cognitive/functional composite in a hypothetical 30-
month clinical trial. Sixty-five percent of power was obtained
with 500 completers per arm over a 30-month trial, using a
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composite with cognition only. We also compared flat weight and
optimized cognitive/functional composites in 48-month trials for
Abþ pcCN subjects. They performed similarly (Supplementary
Fig. 6).

The power estimates for the Abþ subjects are shown in the
lower portion of Fig. 2. With similar sample sizes as the compari-
sons mentioned previously, power estimates never exceeded 40%
with any type of composite.

3.7. Effect sizes and variance components

In Fig. 3, the magnitude of change, the within- and between-
subject standard deviations, and effect sizes are plotted against
the number of components included in the best subset com-
posites, for cCN versus sCN and Abþ versus Ab�. For both
groups, the magnitude of change and both types of SD decrease
with an increasing number of components included in the
composites.
Fig. 2. Plots of power estimates at different sample sizes of completers per arm. The top 2
36 months with 300e500 subjects per arm for the 4 types of endpoints. The bottom 2 rows
the 4 types of composites. Abbreviation: Abþ, b-amyloid-positive.
4. Discussion

The main findings of this study were as follows: (1) including
participants with Ab pathology as well as subtle cognitive
dysfunction, predictive of progression toMCI, resulted in large gains
in power estimates compared to participants with Ab pathology
alone; (2) further gains in power were obtained by including mea-
sures with functional items in the composite; (3) composites
formed by applying equal weights to all 12 measures provided the
highest estimates of cross-validated power, although similar to
continuous weight optimization and best subset optimization; (4)
as the number of components in the composite increased, the
magnitude of change decreased, but both the within-subject and
between-subject variance decreased, leading to an increase in effect
size; (5) in cCN and pcCN participants, the composite measures
selected via optimization were both delayed memory recall as-
sessments, CDR-SB, MMSE, Category Fluency, and immediate
memory recall; in Abþ participants, ADAS13, MMSE, and FAQ were
rows show power estimates for the predicted converters for trials ranging from 18 to
show power estimates for Abþ subjects over the same length trials and sample sizes for



Fig. 3. Differences in the magnitude of change between groups are plotted against the number of components included in the composite, in the top row. The best single component
is furthest left on the x-axis, followed by best 2-component combination, all with equal weights. The second and third rows show how the within- and between-subject variance
changes as the number of components increases for each analysis group. The bottom rows show how the effect size changes with increasing number of components. Abbreviations:
Abþ, b-amyloid-positive; Ab�, b-amyloid-negative; SD, standard deviation.
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selected, however, these composites did not outperform the equal
weight composites when cross-validated in either group; and (6)
only 55.4% of cCN subjects were Abþ, which explains part of the
difference between our analysis of cCN and Abþ subjects, and points
to the importance of non-Abemediated processes to explain
development of cognitive and functional decline.

4.1. Power increase with predicted converters

Substantial increases in power estimates result when including
pcCN subjects compared to Abþ subjects, in all clinical trial simu-
lations (Fig. 2). This might be expected when considering Fig. 1 and
Table 2, where decline is limited both in magnitude and number of
outcomes in the Abþ subjects compared to cCN subjects, especially
over the first 36 months. In contrast, the cCN subjects have already
diverged from sCN subjects on several measures at baseline and
continue to separate on delayed memory recall, global cognitive,
and functional outcomes. Lower cognitive scores and continued
decline in both the pcCN and cCN groups indicate that these
participants are likely already in a later stage of disease at baseline
compared with Abþ participants. The lower power estimates using
ADNI Abþ subjects are consistent with estimates reported in the
analysis of 2 Abþ cohorts for the A4 composite (Donohue et al.,
2014). Substantially shallower decline was observed in the
cognitively-normal ADNI Abþ subjects compared to the
cognitively-normal Abþ subjects from the Australian Imaging,
Biomarkers & Lifestyle Flagship Study of Ageing (AIBL, Ellis et al.,
2009; Donohue et al., 2014). The sharper decline seen in the Abþ
subjects in the AIBL cohort may be due to subtle cognitive
dysfunction at baseline including a 0.4 point lower average MMSE
score, 0.5 point lower delayed memory delayed recall score, as well
as a 20% increase in APOE ε4 allele carriers, comparedwith the ADNI
Abþ subjects. These subtle differences in baseline cognition and the
increased proportion of APOE ε4 carriers may account for the dif-
ferences in power estimates, which are closer to the estimates of
the pcCN cohort observed in this analysis. Taken together, these
results point to the importance of assessing other baseline char-
acteristics besides Ab status when selecting preclinical populations
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for trial enrichment. This should come as no surprise given the vast
literature on the variability of the clinical impact of Ab pathology in
elderly people, where a similar degree of Ab pathology may be seen
in people who are cognitively normal, slightly impaired or fully
demented. This variability likely stems from individual differences
in cognitive and brain reserve mechanisms, differences in the
presence and spread of important copathologies (including tau
pathology), and differences in the time that the individual has been
exposed to Ab pathology before testing. Additional sources of
variation regarding the effect of Ab pathology on cognition in
cognitively-normal cohorts include biomarker modality (PET vs.
CSF) and also choice of threshold for Ab-positivity (Insel et al., 2014;
Mattsson et al., 2014, 2015). The impact of this on the power of
clinical trials, as found in our results, is in agreement with a pre-
viously proposed staging of preclinical AD (Sperling et al., 2011b),
where subjects with a combination of positive AD biomarkers
(including Ab biomarkers) and subtle cognitive dysfunction are
thought to be at much higher risk for future clinical deterioration
compared to subjects with positive Ab biomarkers alone (Vos et al.,
2013).

4.2. Additional power increase with functional components

Including the CDR-SB and FAQ in either the optimized composite
or the equal weight composite resulted in an additional increase in
power over the cognitive composite in the pcCN subjects, reaching
80% power with 375 completers per arm for a 30-month trial
(Fig. 2). Including measures with functional items provided mod-
erate improvements in power for the composites in Abþ subjects
for trials less than 36 months, although power remained low. To
convert from normal cognition to MCI, a subject must demonstrate
a clinically meaningful level of functional decline. Steep decline is
observed on both the CDR-SB (Fig. 1) and on the FAQ immediately
after baseline in cCN subjects. Thus, it follows that including mea-
sures with functional assessments in a composite results in a more
sensitive instrument, in a population of converters. However,
because conversion status in not known at baseline, the inclusion of
functional assessments in a prospective study will only improve
sensitivity if information available at baseline can successfully
identify subjects who are on the verge of functional decline. When
functional measures are excluded, the weights for both the ADAS13
and the MMSE increase. This may reflect that poor scores on a
global cognitive test are likely more correlated with functional
decline compared to single domain measures. Abþ subjects do not
show substantial decline on either CDR-SB or FAQ before month 48.

4.3. Functional and cognitive outcome selection

Delayed memory recall, the MMSE, and the CDR-SB were
selected via optimization for both the cCN and the pcCN compos-
ites. However, even the top-weighted measures had relatively low
median weights, with 10 of the 12 measures having positive
weights for cCN subjects, and 6 of 12 having positive weights for
pcCN subjects (Supplementary Fig. 5). The spread of the weights
suggests that many domains are declining early in the conversion
process. Thus, it follows that the equal weight composites per-
formed well. The failure of the optimization to beat the equal
weight composites suggests that using either continuous weights
or best subset component selection results in overfitting the
training sets and a subsequent reduction of test set power.
Including a large number of components in a composite may
smooth over aberrations in scores in a particular assessment from
visit to visit within a subject, thus lowering the within-subject
variance and improving signal to noise. Similarly, the equal
weight composite provided the most power in Abþ participants,
although power did not approach levels suitable for a phase III trial
(Fig. 2).

4.4. Equal weight composite: effect size, magnitude of change, and
variance

Reasons for slight increases in power with the equal weight
composite become clear from inspection of Fig. 3. As the number of
components included in the composite increases, the magnitude of
change decreases. This would result in a decrease in effect size (if
the variance is held constant) and subsequently, a decrease in po-
wer. If we start with the best single component and continue by
adding additional components, the magnitude of change may
become diluted as less-sensitive components are included in the
composite. We might expect the effect size to drop with each
additional component; however, both the within-subject and
between-subject errors are decreasing at a rate that overcomes the
decrease in the magnitude of change, resulting in an increasing
effect size, as seen at the bottom of Fig. 3. The increase in effect size
plateaus in the 6e10 component range for both the converter and
Abþ groups. The decrease inwithin-subject variance is clear in both
groups; however, the drop in between-subject variance is steeper
for converters, likely due to more consistent decline across all
components. Or alternatively, the converters’ scores are more var-
iable, with more room for a reduction in within-subject variance
when the number of composite components increases.

4.5. Outcome selection in other studies

The outcomes selected via optimization are consistent with the
measures found to capture decline in other cohorts. The API com-
posite in Presenilin 1 E280A mutation carriers includes the Word
List Recall (CERAD), MMSE (orientation to time), and also
Constructional Praxis and Raven’s Progressive Matrices
(Ayutyanont et al., 2014). The API composite developed from
normal to MCI or AD converters includes Category Fluency, Logical
Memory II (dMemory), MMSE (orientation to time), and also Ravens
Progressive Matrices Subset, and Symbol Digit Modalities
(Langbaum et al., 2014). The A4 composite for Ab-positivity in-
cludes the Total Recall score from the Free and Cued Selective
Reminding Test, Logical Memory II (dMemory), MMSE, and the
Digit Symbol Substitution Test (Donohue et al., 2014). Delayed
memory recall, orientation, and processing speed are consistently
selected domains.

A variety of approaches can be used to develop composites that
are sensitive to change over time (Ard et al., 2015). The develop-
ment of composite measures may require the comparison of a large
number of combinations of items, especially if weights are
considered, leading to an increased risk of overfitting and an
inflated estimate of the sensitivity and statistical power of the
constructed composite. A validation procedure in a sample outside
that used to identify the items and weights will be critical to
accurately assess the composite’s performance (Hendrix, 2012). As
seen in our analysis, both types of optimization resulted in reduced
power compared with the equal weight composites, likely due at
least in part by overfitting the training sets. Importantly, the com-
posites developed in this study and for the A4 study were evaluated
out of sample. Neither study was able to reliably improve on equal
weights.

4.6. Limitations

This study has several limitations. We evaluated assessments
available in the ADNI neuropsychological battery, although it is
possible or likely that there are other measures more sensitive to
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decline in preclinical AD. We also did not consider item-level data
from already formed composites, such as the orientation to time
component of the MMSE (Langbaum et al., 2014), which may have
affected the results due to carrying insensitive items along with
more sensitive ones. We also make the assumption that a treatment
will slow the progression of components selected for their fast
decline. In reality, it is unknown which cognitive or functional
components a treatment may affect and it is possible that an
endpoint comprising slower progressing domains will yield more
power. Additionally, we used restricted cubic splines to model the
observed data and subsequently simulated clinical trials assuming
an MMRM model. Maximizing the group trajectory differences
assuming a spline model averages change over all time points to
estimate the group curves, whereas the MMRM model allows
change at each time point to be estimated more independently.
Assuming an MMRM model for both steps of the analysis and
allowing the weights to be differentially optimized according to
trial length may yield different results. The ADNI cohort, with high
levels of education possibly contributing to increased cognitive
reserve, and also limited cognitive decline observed in the
Abþ subjects compared with other cohorts, is potentially different
from a population recruited for a clinical trial. The pcCN cohort is
also considerably smaller with only 32 participants, reducing the
stability of the estimates comparedwith the other cohorts.We used
some of the same measures to predict conversion at screening and
also track decline in the reference (equal weight) composite. It’s
possible that a regression to the mean effect could result in a
reduction of power. However, the equal weight composite
remained the most reliably performing composite with consider-
able power.

5. Conclusion

Our results suggest preclinical AD subjects with lower cognitive
scores at baseline decline more reliably across both cognitive and
functional measures compared to Abþ subjects without signs of
subtle cognitive dysfunction. This provides a challenge to designers
of preclinical AD trials to identify the level of cognitive dysfunction
to be required at screening that will result in further decline,
allowing a treatment effect to be demonstrated. Later stage pre-
clinical AD may represent a more feasible target population for
clinical trials designed to slow cognitive decline. In this population,
suitable power for a phase III trial can be achieved with consider-
ably lower sample sizes while capturing both cognitive and func-
tional change to demonstrate a clinically meaningful drug
effectdboth while initiating treatment in subjects who are still
cognitively normal. Multiple measures of delayed memory recall,
orientation, processing speed, as well as multiple functional mea-
sures should be considered when forming a composite. Finally,
when selecting measures, erring on the side of too many compo-
nents may be preferable to too few.

Disclosure statement

Mr. Insel, Dr. Mattsson, Dr. Hansson, and Dr. Mackin report no
disclosures. Dr. Donohuewas a consultant for Bristol-Myers Squibb.
Dr. Aisen serves on a scientific advisory board for NeuroPhage; has
served as a consultant to Elan, Wyeth, Eisai, Schering-Plough,
Bristol-Myers Squibb, Eli Lilly and Company, NeuroPhage, Merck,
Roche, Amgen, Genentech, Abbott, Pfizer, Novartis, Bayer, Astellas,
Dainippon, Biomarin, Solvay, Otsuka, Daiichi, AstraZeneca, Janssen,
Medivation, Ichor, Toyama, Lundbeck, Biogen Idec, iPerian, Probio-
drug, Somaxon, Biotie, Cardeus, Anavex, Kyowa Hakko Kirin
Pharma, andMedtronic; and receives research support from Eli Lilly
and Baxter and the NIH (NIAU01-AG10483 [PI], NIAU01-AG024904
[Coordinating Center Director], NIA R01-AG030048 [PI], and R01-
AG16381 [Co-I]). Dr. Weiner has been on scientific advisory boards
for Pfizer and BOLT International; has been consultant for Pfizer Inc,
Janssen, KLJ Associates, Easton Associates, Harvard University,
inThought, INC Research, Inc, University of California, Los Angeles,
Alzheimer’s Drug Discovery Foundation, and Sanofi-Aventis
Groupe; has received funding for travel from Pfizer, ADPD meeting,
Paul Sabatier University, Novartis, Tohoku University, MCI Group,
France, Travel eDreams, Inc, Neuroscience School of Advanced
Studies (NSAS), Danone Trading, BV, CTAD ANT Congres; serves as
an associated editor of Alzheimer’s & Dementia; has received
honoraria from Pfizer, Tohoku University, and Danone Trading BV;
has research support fromMerck, Avid, DOD, and VA; and has stock
options in Synarc and Elan.

Acknowledgements

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National In-
stitutes of Health grant U01 AG024904). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering (P30 AG010129 and K01 AG030514),
and through generous contributions from the following: Alz-
heimer’s Association; Alzheimer’s Drug Discovery Foundation;
BioClinica, Inc; Biogen Idec Inc; Bristol-Myers Squibb Company;
Eisai Inc; Elan Pharmaceuticals, Inc; Eli Lilly and Company; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc;
GE Healthcare; Innogenetics, N.V.; IXICO Ltd; Janssen Alzheimer
Immunotherapy Research & Development, LLC; Johnson & Johnson
Pharmaceutical Research & Development LLC; Medpace, Inc.; Merck
& Co, Inc; Meso Scale Diagnostics, LLC; NeuroRx Research; Novartis
Pharmaceuticals Corporation; Pfizer Inc; Piramal Imaging; Servier;
Synarc Inc; and Takeda Pharmaceutical Company. The Canadian
Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated
by the Foundation for the National Institutes of Health (www.fnih.
org). This research was also supported by The Strategic Research
Area MultiPark at Lund University. The grantee organization is the
Northern California Institute for Research and Education, and the
study is coordinated by the Alzheimer’s Disease Cooperative Study
at the University of California, San Diego. ADNI data are dissemi-
nated by the Laboratory for Neuro Imaging at the University of
Southern California. This research was also supported by National
Institutes of Health (NIH) grants P30 AG010129 and K01 AG030514.
Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). As such, the investigators within the ADNI contrib-
uted to the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.neurobiolaging.2016.08.017.

References

Ard, M.C., Raghavan, N., Edland, S.D., 2015. Optimal composite scores for longitu-
dinal clinical trials under the linear mixed effects model. Pharm. Stat. 14,
418e426.

Ayutyanont, N., Langbaum, J.B., Hendrix, S.B., Chen, K., Fleisher, A.S.,
Friesenhahn, M., 2014. The Alzheimer’s prevention initiative composite cogni-
tive test score: sample size estimates for the evaluation of preclinical

http://www.fnih.org
http://www.fnih.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.017
http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.017
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref1
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref1
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref1
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref1
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2


P.S. Insel et al. / Neurobiology of Aging 48 (2016) 172e181 181
Alzheimer’s disease treatments in presenilin 1 E280A mutation carriers. J. Clin.
Psychiatry 75, 652e660.

Breiman, L., 1996. Bagging predictors. Machine Learn. 24, 123e140.
Breiman, L., 2001. Random forests. Machine Learn. 45, 5e32.
Byrd, R.H., Lu, P., Nocedal, J., Zhu, C., 1995. A limited memory algorithm for bound

constrained optimization. SIAM J. Scientific Comput. 16, 1190e1208.
Chambers, J.M., Hastie, T.J., 1992. Statistical Models in S. Wadsworth & Brooks/Cole.
Donohue, M.C., Sperling, R.A., Salmon, D.P., Rentz, D.M., Raman, R., Thomas, R.G.,

Weiner, M., Aisen, P.S., 2014. The preclinical Alzheimer cognitive composite:
measuring amyloid-related decline. JAMA Neurol. 71, 961e970.

Ellis, K.A., Bush, A.I., Darby, D., De Fazio, D., Foster, J., Hudson, P., Lautenschlager, N.T.,
Lenzo, N., Martins, R.N., Maruff, P., Masters, C., 2009. The Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline
characteristics of 1112 individuals recruited for a longitudinal study of Alz-
heimer’s disease. Int. Psychogeriatrics 21, 672e687.

Hendrix, S.B., 2012. Measuring clinical progression in MCI and pre-MCI populations:
enrichment and optimizing clinical outcomes over time. Alzheimers Res. Ther.
4, 24.

Hochberg, Y., 1988. A sharper Bonferroni procedure for multiple tests of signifi-
cance. Biometrika 75, 800e802.

Insel, P., Mattsson, N., Donohue, M.C., Mackin, S., Aisen, P., Jack, C., Shaw, L.M.,
Trojanowski, J.Q., Weiner, M.W., 2014. The transitional association between
beta-amyloid pathology and regional brain atrophy. Alzheimers Demen. 10,
P837eP838.

Insel, P.S., Mattsson, N., Mackin, R.S., Kornak, J., Nosheny, R., Tosun-Turgut, D.,
Donohue, M.C., Aisen, P.S., Weiner, M.W., 2015. Biomarkers and cognitive end-
points to optimize trials in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2,
534e547.

Kaplan, E.F., Goodglass, H., Weintraub, S., 1982. The Boston Naming Test, second ed.
Lea & Febiger, Philadelphia.

Kozauer, N., Katz, R., 2013. Regulatory innovation and drug development for early-
stage Alzheimer’s disease. N. Engl. J. Med. 368, 1169e1171.

Landau, S.M., Mintun, M.A., Joshi, A.D., Koeppe, R.A., Petersen, R.C., Aisen, P.S.,
Weiner, M.W., Jagust, W.J., 2012. Amyloid deposition, hypometabolism, and
longitudinal cognitive decline. Ann. Neurol. 72, 578e586.

Langbaum, J.B., Hendrix, S.B., Ayutyanont, N., Chen, K., Fleisher, A.S., Shah, R.C.,
Barnes, L.L., Bennett, D.A., Tariot, P.N., Reiman, E.M., 2014. An empirically
derived composite cognitive test score with improved power to track and
evaluate treatments for preclinical Alzheimer’s disease. Alzheimers Demen. 10,
666e674.

Mattsson, N., Insel, P.S., Donohue, M., Landau, S., Jagust, W.J., Shaw, L.M.,
Trojanowski, J.Q., Zetterberg, H., Blennow, K., Weiner, M.W., 2015. Independent
information from cerebrospinal fluid amyloid-b and florbetapir imaging in
Alzheimer’s disease. Brain 138, 772e783.

Mattsson, N., Insel, P.S., Nosheny, R., Tosun, D., Trojanowski, J.Q., Shaw, L.M.,
Jack, C.R., Donohue, M.C., Weiner, M.W., 2014. Emerging b-amyloid pathology
and accelerated cortical atrophy. JAMA Neurol. 71, 725e734.

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H.,
Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., 2011. The diag-
nosis of dementia due to Alzheimer’s disease: recommendations from the Na-
tional Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Demen. 7, 263e269.

Morris, J.C., 1993. The clinical dementia rating (CDR): current version and scoring
rules. Neurology 43, 2412e2414.
Morris, J.C., 2005. Early-stage and preclinical Alzheimer disease. Alzheimer Dis.
Assoc. Disord. 19, 163e165.

Olsson, A., Vanderstichele, H., Andreasen, N., De Meyer, G., Wallin, A., Holmberg, B.,
Rosengren, L., VanMechelen, E., Blennow, K., 2005. Simultaneous measurement
of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebro-
spinal fluid by the xMAP technology. Clin. Chem. 51, 336e345.

Pfeffer, R.I., Kurosaki, T.T., Harrah Jr., C.H., Chance, J.M., Filos, S., 1982. Measurement
of functional activities in older adults in the community. J. Gerontol. 37,
323e329.

Raghavan, N., Samtani, M.N., Farnum, M., Yang, E., Novak, G., Grundman, M.,
Narayan, V., DiBernardo, A., 2013. The ADAS-Cog revisited: novel composite
scales based on ADAS-Cog to improve efficiency in MCI and early AD trials.
Alzheimers Demen. 9, S21eS31.

Reitan, R.M., 1958. Validity of the trail making test as an indicator of organic brain
damage. Perceptual Mot. Skills 8, 271e276.

Rey, A., 1964. L’examen clinique en psychologie. Presses Universitaires De France,
Paris.

Rosen, W.G., Mohs, R.C., Davis, K.L., 1984. A new rating scale for Alzheimer’s disease.
Am. J. Psychiatry 141, 1356e1364.

Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen, P.S.,
Petersen, R.C., Blennow, K., Soares, H., Simon, A., Lewczuk, P., Dean, R., 2009.
Cerebrospinal fluid biomarker signature in Alzheimer’s Disease Neuroimaging
Initiative subjects. Ann. Neurol. 65, 403e413.

Siddiqui, O., Hung, H.J., O’Neill, R., 2009. MMRM vs. LOCF: a comprehensive com-
parison based on simulation study and 25 NDA datasets. J. Biopharm. Stat. 19,
227e246.

Snyder, P.J., Kahle-Wrobleski, K., Brannan, S., Miller, D.S., Schindler, R.J., DeSanti, S.,
Ryan, J.M., Morrison, G., Grundman, M., Chandler, J., Caselli, R.J., 2014. Assessing
cognition and function in Alzheimer’s disease clinical trials: do we have the
right tools? Alzheimers Demen. 10, 853e860.

Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M.,
Iwatsubo, T., Jack, C.R., Kaye, J., Montine, T.J., Park, D.C., 2011a. Toward defining
the preclinical stages of Alzheimer’s disease: recommendations from the na-
tional institute on aging-Alzheimer’s association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Demen. 7, 280e292.

Sperling, R.A., Jack Jr., C.R., Aisen, P.S., 2011b. Testing the right target and right drug
at the right stage. Sci. Transl. Med. 3, 111cm33.

Sperling, R.A., Rentz, D.M., Johnson, K.A., Karlawish, J., Donohue, M., Salmon, D.P.,
Aisen, P., 2014. The A4 study: stopping AD before symptoms begin? Sci. Transl.
Med. 6, 228fs13.

US Dept of Health and Human Services; US Food and Drug Administration; Center
for Drug Evaluation and Research. Guidance for industry: Alzheimer’s
disease: developing drugs for the treatment of early stage disease (draft guid-
ance). Available at: http://www.fda.gov/downloads/Drugs/GuidanceCompliance
RegulatoryInformation/Guidances/UCM338287.pdf. Accessed August 8, 2015.

Vos, S.J., Xiong, C., Visser, P.J., Jasielec, M.S., Hassenstab, J., Grant, E.A., Cairns, N.J.,
Morris, J.C., Holtzman, D.M., Fagan, A.M., 2013. Preclinical Alzheimer’s disease
and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957e965.

Wang, J., Logovinsky, V., Hendrix, S.B., Stanworth, S.H., Perdomo, C., Xu, L.,
Dhadda, S., Do, I., Rabe, M., Luthman, J., Cummings, J., 2016. ADCOMS: a com-
posite clinical outcome for prodromal Alzheimer’s disease trials. J. Neurol.
Neurosurg. Psychiatry 87, 993e999.

Wechsler, D.A., 1987. Wechsler Adult Intelligence ScaleeRevised. Psychological
Corporation, New York.

http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref2
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref3
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref3
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref4
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref4
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref5
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref5
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref5
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref6
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref7
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref7
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref7
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref7
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref8
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref9
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref9
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref9
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref10
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref10
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref10
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref11
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref11
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref11
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref11
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref11
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref12
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref12
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref12
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref12
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref12
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref13
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref13
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref14
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref14
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref14
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref15
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref15
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref15
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref15
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref16
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref17
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref17
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref17
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref17
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref17
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref18
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref18
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref18
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref18
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref19
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref20
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref20
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref20
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref21
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref21
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref21
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref22
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref22
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref22
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref22
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref22
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref23
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref23
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref23
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref23
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref24
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref24
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref24
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref24
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref24
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref25
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref25
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref25
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref26
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref26
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref27
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref27
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref27
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref28
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref28
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref28
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref28
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref28
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref29
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref29
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref29
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref29
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref30
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref30
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref30
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref30
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref30
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref31
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref32
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref32
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref33
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref33
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref33
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338287.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338287.pdf
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref35
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref35
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref35
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref35
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref36
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref36
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref36
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref36
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref36
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref37
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref37
http://refhub.elsevier.com/S0197-4580(16)30195-6/sref37

	Cognitive and functional changes associated with Aβ pathology and the progression to mild cognitive impairment
	1. Introduction
	2. Material and methods
	2.1. Participants
	2.2. Cerebrospinal fluid biomarker concentrations
	2.3. Florbetapir PET
	2.4. Cognitive and functional outcomes
	2.5. Statistical analysis

	3. Results
	3.1. Cohort characteristics
	3.2. Baseline cognitive/functional differences
	3.3. Longitudinal change
	3.4. Composite weight distributions
	3.5. Best subset components
	3.6. Power
	3.7. Effect sizes and variance components

	4. Discussion
	4.1. Power increase with predicted converters
	4.2. Additional power increase with functional components
	4.3. Functional and cognitive outcome selection
	4.4. Equal weight composite: effect size, magnitude of change, and variance
	4.5. Outcome selection in other studies
	4.6. Limitations

	5. Conclusion
	Disclosure statement
	Acknowledgements
	Appendix A. Supplementary data
	References


